
Design, Implementation and Deployment of a

Secure Account-Based Electronic Payment System

Mihir Bellare, Juan A. Garay�, Ralf Hauser, Amir Herzberg, Hugo Krawczyk,

Michael Steiner, Gene Tsudik, Els Van Herreweghen, Michael Waidnery

Abstract

This paper discusses the design, implementation and deployment of a secure and practical payment

system for electronic commerce on the Internet. The system is based on the iKP family of protocols {
iKP (i = 1; 2; 3) { developed at IBM Research. The protocols implement credit card-based transactions

between buyers and merchants while the existing �nancial network is used for payment clearing and
authorization. The protocols are extensible and can be readily applied to other account-based payment

model, such as debit cards. They are based on careful and minimal use of public-key cryptography and

can be implemented in either software or hardware. Individual protocols di�er in both complexity and
degree of security.

In addition to being both a pre-cursor and a direct ancestor of the well-known SET standard, iKP-

based payment systems have been in continuous operation on the Internet since mid-1996. This longevity

{ as well as the security and relative simplicity of the underlying mechanisms { make our experience with

iKP unique. For this reason, this paper also reports on, and addresses, a number of practical issues

arising in the course of implementation and real-world deployment of a secure payment system.

1 Introduction and Overview

At this day and age it is hardly necessary to justify, or stress the importance of, electronic commerce. Su�ce
it to say that it has been rapidly gaining momentum since early nineties, and has been equally appealing to
on-line merchants, consumers and payment providers.

There is a widespread agreement that to enable electronic commerce one needs the means for secure
electronic payments. Indeed, the appeal of electronic commerce without electronic payment is limited.
Moreover, insecure electronic payment methods are more likely to impede, than to promote, electronic
commerce. Thus we begin with the premise that security for electronic payment is of the utmost importance.

In this paper we present and discuss a family of secure electronic payment protocols { iKP (i-Key-
Protocol, i = 1; 2; 3). These protocols are compatible with the existing card-based business models and
payment system infrastructure. They involve three parties: the buyer (who makes the actual payment), the
merchant (who will receive the payment) and the acquirer gateway (who acts as an intermediary between

the electronic payment world and the existing payment infrastructure, and authorizes transactions by using
the latter). Hereafter, we will refer to the acquirer gateway as simply the acquirer.

Within this framework we focus on the credit card payment model since it has been the most popular
thus far and likely to remain so in the near future. However, note that other account-based payment models
such as debit cards don't really di�er from the credit card model from a technical viewpoint, and are easily
supported by iKP.

�Contact author: Information Sciences Research Center, Bell Labs { Lucent Technologies, 600 Mountain Ave, Murray Hill,
NJ 07093. Phone: (908) 582-5867, FX: (908) 582-1239. E-mail: garay@research.bell-labs.com.

yWork was done while all authors were with the IBM Research Division.

All iKP protocols are based on public-key cryptography, but they vary in the number of parties (out of
the three involved) that possess individual public key pairs and hence can create digital signatures. This
number is reected in the name of the individual protocols: 1KP, 2KP, and 3KP. The iKP protocols o�er
increasing levels of security and sophistication as the number of parties who possess own public key pairs
increases.

The simplest protocol, 1KP, requires only the acquirer to possess a public key-pair. Buyers and merchants
only need to have authentic copies of the acquirer's public key, reected in a public key certi�cate. This
involves a minimal public key infrastructure (PKI) to provide certi�cates for a small number of entities,
namely, the acquirers. Such an infrastructure can be operated, for example, by a large credit card company.
In the 1KP setting, buyers are authenticated on the basis of their credit card numbers, and possibly associated
secret PINs. Payments are authenticated by communicating the credit card number and PIN, appropriately
encrypted under the acquirer's public key, and properly bound to relevant information (purchase amount,
identities, etc.). This prevents fraudulent merchants from collecting creditcard numbers and creating phony
payments.1 1KP does not o�er non-repudiation for messages sent by buyers and merchants. This means
that disputes about the authenticity of payment orders are not unambiguoulsy resolvable within the digital
system.2

2KP demands that merchants, in addition to acquirers, hold public key-pairs and public key certi�cates.
The protocol can then provide non-repudiation for messages originated by merchants. Additionally, 2KP
enables buyers to verify that they are dealing with bona �de merchants by checking their certi�cates, without
any on-line contact with a third party. As in 1KP, payment orders are authenticated via the buyer's credit
card number and PIN, encrypted before transmission.

3KP further assumes that buyers have their own public key-pairs and public key certi�cates, and thus it
achieves non-repudiation for all messages of all parties involved. Payment orders are authenticated by the
combination of credit card number, optionally a PIN, and a digital signature of the buyer. This makes the
forging of payment orders computationally infeasible. Additionally, 3KP enables merchants to authenticate
buyers on-line. This requires a full public key infrastructure covering all parties involved.

The reason for designing these three variants was to enable gradual deployment: 1KP requires only a
minimal PKI and would have been suitable for immediate deployment at the time it was proposed. 2KP
requires a PKI covering all merchants, 3KP one covering all merchants and all card holders. The way how
iKP and its successor, SET, are deployed showed that there was actually no need for 1KP.

All iKP protocols can be implemented in either software or hardware. In fact, in 1KP and 2KP the buyer
does not even need a personalized payment device: only credit card data and the PIN (if present) must be
entered to complete a payment. However, for the sake of increased security, it is obviously desirable to use
a tamper-resistant device to protect the PIN and { in case of 3KP { the secret key of the buyer.

We emphasize that the goal of iKP is to enable payments. It is not concerned with any aspect of the
determination of the order; it assumes that the order, including price, have already been decided on between
buyer and merchant. It does, however, securely link order information into the payment to enable e�ective
dispute handling.

The iKP protocols do not explicitly provide encryption of the order information. Such protection is as-
sumed to be provided by other existing mechanisms, e.g., SSL [FKK96]. The decoupling of order encryption
from the electronic payment protocol is an important design principle of iKP which supports compatibil-
ity with di�erent underlying browsing and privacy-protecting mechanisms. It also adds to the simplicity,
modularity, and ease of analysis of the protocols. An additional advantage is freeing iKP from US export
restrictions related to the use of bulk encryption. Nonetheless, if desired, the iKP family (especially, 2KP
and 3KP) can be easily extended to generate shared keys between buyer and merchant for protection of
browsing and order information.

The rest of this paper is organized as follows: Section 2 provides a brief summary of the history of iKP
and its relation to the current credit card payment standard, SET. The di�erent roles { buyer, merchant,

1Strictly speaking, one cannot consider a number that is given to any restaurant waiter or receptionist a valuable secret, in
any sense. But even if the buyer is not liable, knowing his or her credit card number is su�cient to commit certain frauds, and
thus overall system security is improved if this number is protected.

2From a legal point of view such ambiguities are not necessarily a problem { provided there are �xed rules how to resolve
them, and all parties are aware of these rules. Some consequences of systems where those rules were not appropriately designed
are illustrated in [And94].

2

acquirer { are introduced in Section 3, and their di�erent security requirements are analyzed in Section 4.
The iKP family is described and analyzed in Section 5, and an implementation architecture for it is proposed
in Section 6. The actually implemented protocols are speci�ed in detail in Appendix A.

2 History and Related Work

iKP was developed in early 1995 by a group of researchers at the IBM Research labs in Yorktown Heights
and Z�urich. Right from the beginning our goal was to work towards an open industry standard. We
distributed the iKP protocols in the Internet Draft form, invited comments from the scienti�c community,
and presented our design at the Internet Engineering Task Force meeting in Summer of 1995. Subsequently
iKP was incorporated into the \Secure Electronic Payment Protocols (SEPP)," a short-lived standardization
e�ort by IBM, MasterCard, Europay and Netscape. SEPP, in turn, was a key starting point for \Secure
Electronic Payments (SET)," the joint VISA/MasterCard standard for credit card payments [MV97]. In
fact, SET still retains some of the iKP-esque features.

Other important ancestors of SET are the \CyberCash Credit Card Protocol" by CyberCash, and the
\Secure Transaction Technology (STT)" by Microsoft and VISA. All these ancestors were proposed inde-
pendently of each other but used more or less the same type of cryptographic protocols.

From 1994 to 1996 an almost countless number of payment protocols for all kinds of payment models were
proposed (see [AJSW97] for a survey). One important di�erence between iKP and most of these proposals
is that iKP was not just a paper design: The \Zurich iKP Prototype (ZiP)" is a fully operational prototype
of 2KP and 3KP. Although ZiP never became a commercial product, it has been successfully deployed in
a number of business trials in Europe and Japan since mid-1996. At the time of this writing, Interpay
Nederland is still using ZiP in their I-Pay system, supporting 80 online merchants and 17000 card holders.

Another important di�erence between iKP and other credit card payment protocols is its simplicity and
{ to the extent the following term can be used { elegance: We designed iKP from a small, well-de�ned set
of security requirements (see Section 4), which resulted in a multi-party secure scheme where no party is
forced to trust other parties unnecessarily. We focused on the core payment functionality and deliberately
omitted all non-payment functionality that could be easily added on top of iKP, such as secrecy of order
information or fair delivery of goods. Finally we designed iKP as a family of protocols, allowing for a gradual
deployment.

Today only two approaches for secure credit card payments over the Internet are practically relevant:
SET, and encryption of credit card data via SSL [FKK96], respectively TLS [DA98].

SET and its ancestor iKP, in particular 3KP, are very similar. The main di�erence is in their complexity:
iKP was designed as a lightweight protocol that provides the core payment functionality only, and is therefore
relatively simple to understand and to analyze. SET was designed to support all options that exist in today's
credit card operation and is therefore semantically much richer than iKP, but also much more di�cult to
analyze.

SSL is the de facto standard for secure (i.e., encrypted and integrity-protected) client-server communica-
tion in the world wide web, and is integrated in virtually all web browsers and servers. SSL uses public-key
cryptography, like SET and iKP, but typically only servers (i.e., merchants) have public-key certi�cates
while clients (i.e., buyers) are anonymous. Encrypting credit card data with SSL is certainly better than
sending them in the clear, but the gain in payment security is very limited:

For the acquirer the use of SSL is completely transparent { no messages are signed { and thus the
merchant does not gain any security.

SSL does not hide the credit card number or anything else from the merchant. Thus, it cannot be used
for PIN-based authorization.

Unlike SET or ZiP, SSL does not mandate any speci�c public-key infrastructure. Thus there is no
guarantee that a buyer can verify the merchant's public-key certi�cate, and even if the certi�cate can
be veri�ed the semantics of such a certicicate is not clear.

Most types of payment systems, not just credit and debit cards, exist in the digital world. Typically each
model requires its own type of protocols, i.e., one cannot expect that iKP can be applied to payment models

3

-

6

?

�

Payment System Provider

Clearing

Payment

Acquirer

SellerBuyer

Issuer

Figure 1: Generic model of a payment system

that are very di�erent to the credit card model. We refer to [AJSW97] for a survey of other payment models
and protocols.

3 Payment Model

Parties. All iKP protocols are based on the existing credit-card payment system. The parties in the
payment system are shown in Figure 1.

The payment system is operated by a payment system provider has �xed business relations with certain
banks who act as issuers of credit cards to buyers, or as acquirers of payment records from merchants
(sellers). Each issuer has a Bank Identi�cation Number, BIN, which it receives at the time it signs up with
a payment system provider, and which is embossed on each credit card issued as part of the credit card
number. The BIN also identi�es the payment system provider.

A buyer receives a credit card from an issuer, and is in possession of a PIN as is common in current
systems. In 1KP and 2KP, payments will be authenticated only by means of the credit card number and
this PIN (both suitably encrypted!), while in 3KP a digital signature is used, in addition to the credit card
number.

It is assumed (as can be expected for electronic payment) that the buyer is using a computer to execute
the payment protocol. Since this computer must receive the buyer's PIN or secret signature key, it must
be a trustworthy device. We caution that even a buyer-owned computer is vulnerable: it may be used by
several people and it may contain a Trojan horse or a virus that could steal PINs and secret keys. The best
payment device would be a secure isolated computer, e.g., a tamper-resistant smartcard, connected to the
computer used for shopping via a buyer-owned smartcard reader with its own keyboard and display. (This is
often called an electronic wallet.) Technically, 1KP and 2KP can be used with any kind of payment device,
while for 3KP the buyers need personal devices that store their secret signature keys and certi�cates.

A seller signs up with the payment system provider and with a speci�c bank, called an acquirer, to accept
deposits. Like a buyer, a seller needs a secure device that stores the seller's secret keys and performs the
payment protocol.

Clearing between acquirers and issuers is done using the existing �nancial networks.
The iKP protocols deal with the payment transaction only (i.e., the solid lines in Figure 1), and therefore

involve only three parties, called B { Buyer, S { Seller, and A { Acquirer (gateway). Recall that A is not the
acquirer in the �nancial sense, but a gateway to the existing credit card clearing/authorization network. In
other words, the function of A is to serve as a front-end to the current infrastructure that remains unchanged.

4

The protocols presented describe the core of a payment system only. Besides this, additional mechanisms
are needed, e.g., for providing statements of account.

Public Keys and Certification. Since all iKP protocols are based on public-key cryptography, we need
a mechanism to authenticate these public keys. We assume a certi�cation authority, CA, which has a secret
key, SKCA. Its public counterpart, PKCA, is held by all other parties. CA will certify a public key of party X
by signing the pair (X;PKX) consisting of the identity of X and X's public key. (The signature is computed
under SKCA.) Note that PKCA must be conveyed in an authenticated manner to every party. This will be
typically done out-of-band, via any of a number of well-known mechanisms.

For simplicity's sake, the following discussions assume that there is only one certi�cation authority.
However it is easy to extend the protocols to support multiple certi�cation authorities, e.g., such that the
payment system provider at the top-level authority issues certi�cates to its constituent issuers and acquirers,
while these, in turn, issue certi�cates to their buyers and sellers. The implementation described in Section 6.3
indeed supports this hierarchical model.

In all iKP protocols, an acquirer A has a secret key, SKA, which enables signing and decryption. Its
public counterpart, PKA, (which enables signature veri�cation and encryption) is held by each accredited
seller together with its corresponding CA's certi�cate. As in current operation, acquirers receive the buyer's
credit card numbers and PINs, and are trusted to keep these values con�dential.

In 2KP, each seller, and in 3KP also each buyer, has a secret/public key-pair. They are denoted by
(SKS ;PKS) and (SKB;PKB), respectively. Both public keys are included in certi�cates issued by CA.

Adversaries and Threats. We consider three di�erent adversaries:

Eavesdropper who listens to messages and tries to learn secrets (e.g., credit card numbers, PIN's)

Active attacker who introduces forged messages in an attempt to cause the system to misbehave (e.g.,
to send him goods instead of to the buyer)

Insider who either is some legitimate party or learns that party's secrets. (One example is a dishonest
seller who tries to get paid without the buyer's authorization.)

Before listing the security requirements in Section 4, we briey discuss common threats and attacks.
The Internet is a decentralized, heterogeneous network, without single ownership of the network resources

and functions. In particular, one cannot exclude the possibility that messages between the legitimate parties
would pass through a maliciously controlled computer. Furthermore, the routing mechanisms in the Internet
are not designed to protect against malicious attacks. Therefore, it is folly to assume either con�dentiality or
authentication for messages sent over the Internet, unless proper cryptographic mechanisms are employed.
To summarize, it is easy to steal information o� the Internet. Therefore, at least credit card numbers and
PINs must not be sent in the clear.

In addition, one must be concerned about the trustworthiness of the sellers providing Internet service.
The kind of business that is expected in the Internet includes the so-called cottage industry { small sellers. It
is very easy for an adversary to set up a shop and put up a fake electronic storefront in order to get buyers'
credit card numbers. This implies that the credit card number should travel from buyer to seller without
being revealed to the seller (who needs only the BIN which can be provided separately.)

Obviously, a good deal of care must be taken to protect the keys of acquirers. One of the biggest concerns
is that of an adversary breaking into an acquirer computer through the Internet connection. Therefore, the

acquirer's computer must be protected with the utmost care; including a very limited Internet connection

using advanced �rewall technology (e.g., [CB94, CGHK98].)
Furthermore, the trust in the acquirer's computer must be limited, so that a break-in would have a

limited e�ect only.

4 Security Requirements

In this section we consider a range of potential requirements for each party involved in the payment process:
issuer/acquirer, merchant, and buyer. They range frommandatory security requirements to optional features.

5

Issuer/Acquirer Requirements. The issuer and the acquirer are assumed to enjoy some degree of
mutual trust. Moreover, an infrastructure enabling secure communication between these parties is already
in place. Therefore, we join the requirements of the issuer and the acquirer.

A1{ Proof of Transaction Authorization by Buyer. When the acquirer debits a certain credit card account
by a certain amount, the acquirer must be in possession of an unforgeable proof that the owner of the
credit card has authorized this payment. This proof must not be \replayable," or usable as proof for
some other transaction. This means it must certify at least the amount, currency, goods description,
seller identi�cation, and delivery address, and be obtained in such a way that replay is not possible.
(We use a combination of time stamps and nonces for this purpose). Note also that in this context
the seller may be an adversary, and even such a seller must not be able to generate a fake debit. We
distinguish between:

(a) Weak Proof, which authenticates the buyer to the acquirer but does not serve as a proof for
third parties, and

(b) Undeniable Proof, which provides full non-repudiation, i.e., can be used to resolve disputes
between the buyer and the payment system provider.

The same distinction will be made for all subsequently required proofs of transaction.

A2{ Proof of Transaction Authorization by Seller. When the acquirer authorizes a payment to a certain
seller, the acquirer must be in possession of an unforgeable proof that this seller has asked that this
payment be made to him.

Seller Requirements. We ask for two guarantees for the seller.

S1{ Proof of Transaction Authorization by Acquirer. The seller needs an unforgeable proof that the
acquirer has authorized the payment. This includes certi�cation and authentication of the acquirer, so
that the seller knows he is dealing with the real acquirer, and certi�cation of the actual authorization
information. Note that again the amount and currency, the time and date, and information to identify
the transaction must be certi�ed. We also distinguish between (a) Weak proof and (b) undeniable
proof, which provides full non-repudiation.

S2{ Proof of Transaction Authorization by Buyer. Even before the seller receives the transaction autho-
rization from the acquirer, the seller might need an unforgeable proof that the buyer has authenticated
it. Again we distinguish between (a) Weak Proof and (b) Undeniable Proof. This requirement is
necessary to provide for o�-line authorization.

Buyer Requirements. We ask for the following guarantees to the buyer who is making the payment.

B1{ Unauthorized Payment is Impossible. It must not be possible to charge something to a buyer's
credit card without possession of the credit card number, PIN, and in case of 3KP, the buyer's secret
signature key. Thus, neither Internet rogues nor malicious sellers must be able to generate spurious
transactions which end up approved by the acquirer. This must remain the case even if the buyer has
engaged in many prior legitimate transactions. In other words, information sent in one (legitimate)
transaction must not enable a later spurious transaction. So in particular the PIN must not be
sent in the clear, and not even be subject to guessing attacks! Similar to the two type of proofs of
transactions, we distinguish between:

(a) Impossibility, which means that unauthorized payments are impossible provided the acquirer is
honest and its secret key is not available to the adversary, and

(b) Disputability, which means that even if the acquirer's secret key is available to the adversary
(e.g., because the adversary co-operates with an insider), the buyer can prove that he/she did
not authorize the payment.

In fact, these two requirements are typically met by meeting the corresponding acquirer require-
ments A1.a and A1.b, respectively.

6

B2{ Proof of Transaction Authorization by Acquirer. The buyer would like to be in possession of proof
that the acquirer authorized the transaction. This \receipt" from the acquirer is not of paramount
importance, but is convenient to have. Again, we distinguish between (a) Weak Proof and (b) Un-
deniable Proof (full non-repudiation).

B3{ Certi�cation and Authentication of Seller. The buyer needs a proof that the seller is accredited at
an acquirer (which could be considered as some guarantee for the trustworthiness of the seller).

B4{ Receipt from Seller. The buyer wants a proof that the seller who has made the o�er has received
payment and promised to deliver the goods. This takes the form of an undeniable receipt. 2KP
and 3KP will satisfy this requirement, but will not ensure fairness[ASW98, Aso98]: The seller can
always refuse sending this receipt while already having received the authorization message from the
acquirer. In this case, the buyer must take the next statement of account as a replacement for this
receipt.

Additional possible buyer requirements. The following requirements (B5 { B6) may also be desirable.
Here we shortly discuss their relation to iKP; however, they are not explicitly addressed by the iKP protocols.

B5{ Privacy. Buyers want privacy of their order and payment information. For example a businessman
may be purchasing the latest information on certain stocks and may not want competitors to know
which stocks he is interested in. The privacy of order information and amount of payment should be
implemented independently of the payment protocol, e.g., based on SSL [FKK96]. iKP does provide
some privacy: it does not reveal order information to any other party than the seller, at least as
long as there is no dispute. But it does not include encryption of these data. Obviously, credit card
number and PIN must be protected carefully, which is achieved within iKP by encrypting them with
the acquirer's public key. (This is the only application of encryption in iKP, which is made in order
to facilitate exportability from the US.)

B6{ Anonymity. Besides con�dentiality of order and payment information, buyers may want anonymity
from eavesdroppers and (optionally) also from the seller. It is also conceivable that the buyer may
even want anonymity with respect to the payment system provider.

iKP doesn't focus on anonymity and in particular does o�er no anonymity from the payment
system provider. This might be desirable for systems that aim to imitate cash, but is not essential
for protocols, like iKP, that follow the credit card-based payment model. iKP tries however to
minimize the exposure of the buyers identity towards the outside and the seller.

5 The iKP Protocol Family

In this section we present the three iKP protocols, i 2 f1; 2; 3g. We �rst describe the cryptographic primitives
used by the protocols, as well as their general structure. In the presentation, enough information (e.g., atomic
and composite �elds) is included in the protocol ows so as to show how the protocols satisfy the security
requirements listed in the previous section. A complete description of this information is given in the protocol
speci�cation section, Section 6.

Primitives and keys. Figure 2 summarizes the notation for the cryptographic keys held by the various
parties, and the cryptographic primitives we will be using. While A's key pair must enable signature
and encryption, all other key pairs need to enable signatures only.3 Note that signing and encryption are
independent operations; in particular, EX (SX (�)) 6= �.

We want an encryption function EX which provides some form of \message integrity." Decryption of a
ciphertext results either in a plaintext message, or in a ag indicating non-validity. Formally, the primitive we
want is an encryption function which is secure against adaptive choosen ciphertext attacks. This means that
correct decryption convinces the decryptor that the transmitter \knows" the plaintext that was encrypted.

3For simplicity of exposition, we will be assuming in this section that each party has only one pair of keys; in Section 6 we
will be using dedicated pairs for encryption and signature.

7

� Keys:

PKX ;SKX Public and secret key of Party X (X = Certi�cation Authority CA, Buyer
B, Seller S, Acquirer A).

CERTX Public key certi�cate of Party X, issued by CA. We assume it includes

X;PKX and CA's signature on X;PKX .

All protocols assume A has a public key, and any party needing it has PKCA. 1KP assumes no other

keys; 2KP additionally assumes S has a public key; 3KP further assumes B also has a public key.

� Cryptographic primitives:

H(�) A strong collision-resistant one-way hash function. Think of H(�) as return-

ing \random" values. (Examples: MD5 [Riv92], SHA-1 [NIS95])

Hk(K; �) This one-way hash function requires in addition to collision-resistance that

no information is leaked about the other arguments if its �rst argument K

is choosen at random. I.e., Hk(K; �) should behave like a family of pseudo-
random functions. (Examples: HMAC [BCK96, Kra99]).

EX(�) Public-key encryption using PKX , done in a way to provide not only con�-

dentiality but also some kind of \message integrity."

SX(�) Signature with respect to SKX . Note the signature of messageM does NOT

include M . We assume the signature function hashes the message before

signing.

Figure 2: Keys and cryptograhic primitives used in iKP protocols

In particular, tampering with ciphertext is detectable. Two practical yet proveably secure schemes to achieve
this are Optimal Asymmetric Encryption Padding (OAEP) [BR94] and Cramer-Shoup [CS98].

We stress that such encryption does not provide authentication in the manner of a signature, i.e., it
does not provide non-repudiation. But it can be made to provide an authentication-like capability between
parties sharing a key (such as the BAN or PIN).

We note that the encryption function is necessarily randomized: EX invoked upon message m will use,
to compute its output, some randomizer, so that each encryption is di�erent from previous ones.

The prototype implementation described in Section 6 uses RSA with key length 1024 for signature, and
for the basis of the plaintext aware encryption; it also uses MD5 as a hash function.

Figure 3 is a list of quantities that will occur in the protocols. Their meaning and usage will be further
explained as we go along.

Framework of iKP protocols. The protocols have a common framework. Figure 4 illustrates the ows
at a very high level. Before the protocol begins, each party X 2 fA;B; Sg has some starting information
represented by ST-INFX . The buyer starts with the public key PKCA of the certi�cation authority. The
seller has the certi�cate CERTA of the acquirer, and the acquirer has his own certi�cate CERTA plus the
corresponding secret key SKA. They may each also have other information, which di�ers depending on
whether we are in 1KP, 2KP or 3KP, and will be speci�ed at the appropriate time.

It is assumed that before the protocol starts, the buyer and the seller have agreed on the description
and price of the items to buy. The functionality required to shop and agree on the item and price are to be
provided by other means (e.g., the browser), not by iKP.4 Thus, DESC and PRICE are part of the starting
information of seller and buyer.

4Indeed, the consensus nowadays is that functions that are beyond payment, such as price negotiation, should be separated,
and standardized; e.g., JEPI [CD97], SEMPER [Wai96].

8

� Quantities occuring in all three protocols:

SALTB Random number generated by B. Used to salt DESC and thus ensure pri-

vacy of order information (DESC) on the S to A link; also used to provide

freshness of signatures (SigS and SigA).

PRICE Amount and currency

DATE Seller's date/time stamp, used for \coarse grained" replay protection of a
payment

NONCES Seller's nonce (random number) used for more \�ne grained" replay protec-

tion of a payment

IDS Seller id. This identi�es seller to acquirer.

TIDS Transaction ID. This is an identi�er chosen by the seller which uniquely

identi�es the context.

DESC Description of purchase/goods, and delivery address. Includes payment in-
formation such as credit card name, bank identi�cation number, and cur-

rency. De�nes the agreement between buyer and seller as to what is being

paid for in this payment transaction.

BAN Buyer's Account Number (e.g., credit card no.). Includes expiration date.

RB Random number chosen by buyer to form IDB . It must be random (not just

unique) in order to serve as proof by the buyer that the seller agreed to the
payment.

IDB A buyer pseudo-ID which IDB = Hk(RB ;BAN).

Y=N Response from the clearing network: YES/NO or authorization code.

Textj For j = 0; 1; 2; : : :. This is optional information that can accompany the

ows. For example, can be used to carry context identi�ers.

� Quantities occuring in some of the protocols:

PIN Buyer PIN which, if present, can optionally be used in 1KP and 2KP to
enhance the security.

V Random number generated by seller in 2KP and 3KP for use as a proof that

seller has accepted payment (i.e., to bind Con�rm and Invoice messages).

Figure 3: De�nitions of atomic �elds used in iKP protocols

The basic protocol consists of �ve ows.5 The exact content of these ows depends on the protocol: they
are di�erent in 1KP, 2KP and 3KP. At a high level, however, there is a common structure. The buyer starts
with an Initiate ow. The seller responds by providing the Invoice. The buyer then makes the Payment which
the seller uses to send an authorization request Auth-Request to the acquirer. The acquirer goes through the
�nancial network to obtain the authorization and returns an authorization response Auth-Response to the
seller. The latter processes this to produce a con�rmation ow Con�rm for the buyer.

The main di�erence between 1KP, 2KP and 3KP is the increasing use of digital signatures as more of
the parties involved possess a public/secret key pair.

5Later, in Section 6, we will be adding some additional ows to provide for the cancellation of a transaction, payment
clearance, and inquiry of status of a speci�c payment.

9

5.1 1KP

Protocol 1KP, illustrated in Figure 5, represents the initial step in the gradual introduction of a public-key
infrastructure. Although it requires the use of public-key encryption by all parties, only the acquirer, A,
needs to possess and distribute its own public key certi�cate, CERTA. In particular, the total number of
certi�cates to be issued by the certi�cation authority is small as it depends only on the number of acquirers.

Like all members of the iKP Family, 1KP requires that all buyers and sellers have an authentic copy of
PKCA, the public key of the certi�cation authority. A buyer B has an account number BAN (e.g., a credit
card number) known to the acquirer. It may also have a secret PIN which is also known to the payment
system (but not to the sellers!). Every seller has to know the certi�cate of the corresponding acquirer,
CERTA.

1KP does not require A to keep a state per buyer. Instead, the buyer's PIN is veri�ed using the existing
authorization infrastructure (which uses tamper-resistant technology for processing and veri�cation of PIN's).

All parties in 1KP must perform certain public key computations. Encryption is only applied once, for
sending account data (and PIN) from the buyer to the acquirer securely. Therefore, public key encryption
is required from B only, while decryption is required from A only (this is true also for 2KP and 3KP). In
1KP, only A has to sign some data, which must be veri�ed by B and S. We now provide the ow by ow
actions of the parties. In the protocol, Common is the information held in common by all parties, and Clear
is the information transmitted in the clear.

Initiate: The buyer forms IDB by generating random number RB and computing IDB = Hk(RB;BAN).
Generates another random number SALTB to be used for \salting" the hash of merchandise description
(DESC) in subsequent ows. Sets Text0 to include desired protocol options (if any) and/or DESC. Sends
Initiate.

Invoice: The computation of the second ow, Invoice, takes place as follows. The seller retrieves SALTB
and IDB from Initiate. Chooses/obtains DATE|this is a time stamp, and indicates, say the hour as well.
Generates nonce NONCES . The combination of DATE and NONCES will be used later by A to uniquely
identify this order: the nonce disambiguates payments with a common DATE. Chooses transaction id TIDS
which identi�es the context. Computes Hk(SALTB;DESC). Forms Common as de�ned above and computes
H(Common). (Note: Seller does not need to additionally \salt"H(Common) because it contains the already-
salted Hk(SALTB ;DESC).) Composes Text1. (If B did not already have CERTA then it could go here. Or
this could include a context pointer for the buyer.) Finally sends Invoice.

Buyer

(ST-INFB)

Seller

(ST-INFS)

Acquirer

(ST-INFA)

����
Initiate
������������!

 ����
Invoice
������������

����
Payment
������������!

�
Auth-Request
�����������!

 �
Auth-Response
������������

 ����
Con�rm
������������

 �
Goods and Services
����������

Figure 4: Framework of iKP protocols

10

� Composite Fields:

Common PRICE, IDS, TIDS, DATE, NONCES, IDB, Hk(SALTB;DESC)

Clear IDS, TIDS, DATE, NONCES , H(Common)

SLIP PRICE, H(Common), BAN, RB, [PIN]

EncSlip EA(SLIP)

� Starting information of parties:

ST-INFB DESC;BAN;PKCA; [PIN]

ST-INFS DESC;PKCA;CERTA

ST-INFA SKA;CERTA

� Protocol Flows:

Initiate: B �������������

SALTB; IDB; [Text0]
������������������������������! S

Invoice: B �

Clear
z }| {

IDS; TIDS; DATE; NONCES; H(Common); [Text1]
��� S

Payment: B ��������������

EncSlip
z }| {

EA(SLIP); [Text2]
����������������������������! S

Auth-Request: S ����

Clear; Hk(SALTB;DESC); EncSlip; [Text3]
��������������������������������������! A

Auth-Response: S ������

Y=N;

SigA
z }| {

SA(Y=N;H(Common)); [Text4]
������������������������������������ A

Con�rm: B ����������

Y=N; SigA; CERTA; [Text5]
�������������������������������� S

Figure 5: 1KP Protocol

11

Payment: Buyer retrieves Clear from Invoice. He retrieves IDS , DATE, TIDS and NONCES . He validates
DATE within a certain time skew. He computes Hk(SALTB ;DESC); he already has PRICE and IDB , so
that he can now form Common. He computes H(Common) and checks that this matches the value in Clear.
He then forms the SLIP as de�ned in Figure 5. (It includes the price, the buyer's account number (credit
card number), and H(Common). It also includes the salt RB used to form the IDB , and optionally the PIN
if present.) The slip is now encrypted under the acquirer public key: he sets EncSlip = EA(SLIP). This,
along with the optional Text2, is the Payment ow sent to the seller.

Auth-Request: The seller will now ask that the acquirer authorizes the payment. He forwards EncSlip. He
also sends Clear and Hk(SALTB ;DESC), and optional Text3.

Auth-Response: The acquirer extracts Clear, Hk(SALTB;DESC) and EncSlip from Auth-Request. It then
does the following:

(1) Extracts from Clear the following{ IDS , TIDS , DATE, NONCES and the value h1 which is supposed to
be H(Common). It now checks for replays. That is, it makes sure that there is no previously processed
request with these values of IDS , TIDS , DATE and NONCES .

(2) Now it decrypts EncSlip. If the decryption fails, then the alteration of EncSlip (by an adversary or by
S) is detected and the transaction is invalid. If not, A gets SLIP. Now A extracts PRICE, the value
h2 which is supposed to be H(Common), BAN, RB, and, if present, the PIN from SLIP.

(3) It checks that h1 = h2|this ensures that buyer and seller agree on the order information (price, identity

of seller, etc).
(4) It re-forms Common. (It has PRICE from SLIP. It has IDS , TIDS , DATE, and NONCES from

Clear. It can compute IDB = Hk(RB;BAN) because it has RB and BAN from SLIP. Finally it
has Hk(SALTB ;DESC) from Auth-Request. These put together yield Common.) It then computes
H(Common) and checks this equals the value h1(= h2) above.

(5) Now it uses the credit card organization's existing clearing and authorization system to on-line au-
thorize the payment: for this, it will forward BAN, PIN if present, the price, etc., as dictated by the
authorization system. Upon receipt of a response Y=N from the authorization system, A computes a
signature, using the function SA, on Y=N and H(Common).

Finally it sends Auth-Response and possibly Text4. The latter could include TIDS so that the seller can
easily recover the context.

Con�rm: The seller receives Auth-Response. He extracts Y=N and the acquirer signature. He already has
H(Common). Now he checks that the acquirer sent a valid signature ofY=N;H(Common). He then forwards
Y=N to the buyer. He also forwards the acquirer signature so that the buyer may check it.

There are some �nal checks by the buyer: for example, he may want to check the acquirer's signature. We
stress here that the use of H(Common) in the signature (as opposed to using the explicit values amount,
currency, etc.), is done in order to protect the privacy of these data when transmitted to seller and buyer.
We now look at which requirements 1KP satis�es.

A1(a) Proof of Transaction Authorization by Buyer. SLIP includes the BAN and the PIN. (The latter, if
present, is known only to the buyer and payment system and is the basis of the security. If it is not present,
one must assume the BAN is not known to an adversary.) Since B knows PKCA and veri�es CERTA, it
is ensured that B does not unwittingly send the BAN and PIN to a non-authorized party. A decrypts and
checks that the BAN and PIN are correct. The plaintext-awareness of the encryption (see beginning of
Section 5) implies that SLIP originated with the BAN and PIN holder. An adversary not knowing the BAN
or PIN can neither create a fake SLIP nor modify the encryption of a legitimate one to its advantage.

Replay of a SLIP by a dishonest seller will be detected by the combination of the DATE and NONCEM .
There is an \acceptable delay" period Tdelay. Slips containing a particular DATE are kept until for Tdelay
more time than that indicated by DATE. (For example, DATE could be the date and hour, and the delay
period a day, meaning slips are kept for a day more than the DATE marked on them.) Within a particular
value of DATE, di�erent slips are disambiguated by the nonces.

12

The \semantic security" of the encryption (and in particular the fact that it is randomized) implies also
security against dictionary-attacks. If the attacker knows all data in SLIP except PIN, he could compute
encryptions EA(SLIP) for all possible values of PIN. With a deterministic encryption function, he could easily
determine the correct PIN by comparing all encryptions with the one produced by C. Therefore, plain-text
aware encryption is randomized: if SLIP is encrypted twice, two di�erent cyphertexts are produced, which
excludes this type of attack.

Note that PIN-based authentication provides a weak proof only. Signature-based authentication as used
in 3KP provides an undeniable proof. Moreover, the probability of guessing the correct PIN is much higher
than the probability of guessing a valid-looking signature.

It is important to stress that the \transaction" of which we want a proof includes the item description,
and in particular the delivery address. It should not be possible for an adversary to divert a legitimate
payment by changing the delivery address. The inclusion of H(Common) in A's authorization is to prevent
such attacks. In particular it prevents a certain kind of person-in-the-middle attack that we now describe.

An attacker that impersonates a seller can get the agreement of the buyer to buy something for a given
amount. The adversary gets from the buyer an encrypted slip authorizing the payment. The adversary now
impersonates the buyer to the seller, but this time the adversary buys for the same amount a (possibly)
di�erent merchandise with di�erent delivery address and \pays" for it with the buyer's slip. Notice, however,
that in this case there will be a mismatch between the view of the \order" by the real buyer and the sller,
and, consequently, a mismatch in the value of H(Common).

S1(b): Proof of Transaction Authorization by Acquirer. The unforgeable, undeniable proof is the digitally-
signed message sent by A. Notice that we have used a digital signature so that non-repudiability is provided.
The inclusion of H(Common) prevents the replay of authorization messages which would result in fake
authorization of buyer's orders.

Since the seller knows Common in advance, the signature would indicate any tampering in the information
sent from seller to acquirer, and any disagreement between buyer and seller on the payment data.

The inclusion of H(Common) both in the buyer-generated SLIP and directly in Auth-Request by the
seller enables A to detect a disagreement between seller and buyer with respect to the order contents (even
before submitting the transaction to the clearing network).

B1(a): Unauthorized Payment is Impossible. This is a direct consequence of the achievement of A1(a).

B2(b): Proof of Transaction Authorization by Acquirer. As for S1(b).

B5: Privacy. Some partial privacy is provided. Speci�cally, the acquirer is not given DESC, but rather
Hk(SALTB ;DESC). Furthermore, the acquirer, or an eavesdropper on the acquirer-to-seller link, cannot
obtain DESC via a dictionary attack, as we now explain.

In a dictionary attack, the attacker has some small set of possible values of DESC, and want to see
whether one of them is what the buyer is ordering. Had we not used the salt, but just sent H(DESC),
the attacker could easily make the check by evaluating H on his values and seeing whether one of the
results matches the value H(DESC) in the ow. But assuming he doesn't know SALTB then by salting
DESC in Hk(SALTB;DESC) all possible description DESC0 will will have the same likelihood due to the
pseudo-random nature of Hk(). Of course, if he was powerful enough to obtain SALTB of the buyer-to-seller
link (where it was transmitted in the clear) he would be able to do the dictionary attack, but that he can
eavesdrop like that on both links is not too likely. Also, if privacy is really a concern, the buyer-to-seller
communication may be protected by alternative means (e.g., SSL [FKK96]).

We stress that provision of privacy is not a primary concern of a payment protocol. However, we wish at
least to not give anything away that should not be, and took the chance to add whatever privacy we could
add without much cost.

The last ow from seller to buyer in which the signed authorization by the acquirer is transmitted is optional.
It only serves as a receipt for the buyer but is not needed for the security of the payment protocol.

To summarize, 1KP is a simple and e�cient protocol whose main achievement was (at the time of its
design, circa 1995) to get a secure electronic payment system with as little modi�cation as possible to the
existing infrastructure. Its main weaknesses are: 1) the buyer authenticates itself via the acquirer and

only using an account number and PIN (as opposed to a strong authentication via a digital signature);

13

2) the seller does not directly authenticate itself to the buyer or acquirer (there is some level of indirect
authentication via the buyer's SLIP and the authorization by the acquirer); and 3) neither seller nor buyer
provide undeniable receipts for the transaction. Upgrading 1KP to provide these missing features results in
the protocols described in the next two subsections, namely, 2KP and 3KP.

� Composite Fields:

Common PRICE, IDS, TIDS, DATE, NONCES, IDB, Hk(SALTB;DESC), H(V)

Clear IDS, TIDS, DATE, NONCES , H(V), H(Common)

SLIP PRICE, H(Common), BAN, RB, [PIN]

EncSlip EA(SLIP)

SigS SS(H(Common);H(V))

� Starting information of parties:

ST-INFB DESC;BAN;PKCA, [PIN]

ST-INFS DESC;PKCA;CERTA;SKS ;CERTS

ST-INFA PKCA;SKA;CERTA

� Protocol Flows:

Initiate: B ���������������

SALTB; IDB; [Text0]
��������������������������������! S

Invoice: B ��

Clear
z }| {

IDS ; TIDS; DATE; NONCES; H(V); H(Common);
SigS

z }| {

SS(H(Common);H(V)); CERTS; [Text1]

�� S

Payment: B �����������������

EncSlip
z }| {

EA(SLIP); [Text2]
�������������������������������! S

Auth-Request: S �

Clear; Hk(SALTB;DESC); EncSlip; SigS ; CERTS; [Text3]
��! A

Auth-Response: S ���������

Y=N;

SigA
z }| {

SA(Y=N;H(Common)); [Text4]
��������������������������������������� A

Con�rm: B �����������

Y=N; V; SigA; CERTA; [Text5]
������������������������������������ S

Figure 6: 2KP Protocol

14

5.2 2KP

The second protocol, 2KP, is illustrated in Figure 6. The basic di�erence with respect to 1KP is that, in
addition to A, each seller S needs to possess a public key with a matching secret key, and distribute its own
public key, with its certi�cate, CERTS .

We now describe the additions to the ows and actions. There are two new elements in Invoice. The �rst
is that the seller chooses a random value V and puts H(V) in Invoice. (The inclusion of V in Con�rm will later
serves as a (one-time) \signature" thereby saving the seller one signature computation. See below.) This
value will be added to Common for what follows. Second, the seller signs (using SKS) the pair of strings
H(Common) and H(V) and includes this signature Sig

S
in Invoice too. Furthermore the seller includes

CERTS so that the buyer can check his signature. Upon receipt of Invoice the buyer checks the seller's
signature, and then proceeds as before to generate Payment. Auth-Request is augmented by the seller to
include the same signature SigS he sent to the buyer earlier, together with CERTS . The acquirer checks this
signature before authorizing payment. Finally, the value V is included by the seller in Con�rm. The buyer
computes H(V) and checks that it matches the value sent earlier in Invoice.

2KP satis�es all the requirements addressed by 1KP as well as:

A2: Proof of Transaction Authorization by Seller. This is achieved by the inclusion of the seller's signature
Sig

S
and certi�cate CERTS , and the acquirer's veri�cation of these.

B3: Certi�cation and Authentication of Seller. Similarly achieved by inclusion of signature of seller and its
check by buyer.

B4: Receipt from Seller. This is achieved by the combination of S's signed message sent to A, A's signed
authorization message, and the value V sent in con�rm. V assures the buyer (and any third party) that
the seller has accepted the authorization response. (This is the payment if Y=N is yes, and the statement
of rejection otherwise.) This is because no other party is capable of �nding V . (It would require inverting
the one-way function H on the point H(V).) Note it is important here that the buyer check SigA|else
an adversary can ip Y=N after the seller sends Y=N and V . Thus, the combination of SigS , V and SigA
give the buyer undeniable proof of the seller's agreement to the transaction's outcome (whether positive
or negative). The same could be achieved by S signing A's authorization message, but at the cost of an
additional signature.

Obviously, S can refuse forwarding A's authorization message to the buyer and sending its last message.
In this case, B does not know whether the transaction was aborted or �nalized (this must be handled based
on the next statement of account).

5.3 3KP

As can be expected, in the last protocol|3KP|all protocol participants, including buyers, possess a public
key, with the associated secret key and certi�cate. As illustrated in Figure 7, all parties are now able to
provide non-repudiation.

The CERTB sent to the seller may not only contain the buyer's public key and ID, but also further
data. This further data is included in the certi�cate in salted hashed form using Hk(). This allows to open
the information only on demand and doesn't leak information to unauthorized users. For instance, CERTB
might include the hash of the buyer's physical address, and if ordered goods should be sent to B's home
address, B can reveal \Buyer's physical address" and the corresponding salt to the seller who can verify it
based on CERTB . Similarly CERTB can securely link the BAN to the signing key. This allows the acquirer
to e�ciently verify that the payer has the necessary authority over BAN contained in the SLIP. See the use

of SALTC in the ZiP protocols below and Krawczyk [Kra99] for a more indepth study of this issue.
The buyer's signature serves as undeniable proof of transaction (A1.b), and enables disputability (B1.b).

On the other hand, the sellers can link all payments of the buyer with CERTB and B's signature, i.e., the
buyer loses some of the privacy compared to 1KP and 2KP. One way to avoid this is by encrypting CERTB
and the signature with A's public key.

Notice that in 3KP PIN numbers can still be used, but only for compatibility with the existing infras-
tructure. Except for that reason, PINs can be safely omitted since the level of authentication provided by

15

� Composite Fields:

Common PRICE, IDS, TIDS, DATE, NONCES, IDB, Hk(SALTB;DESC), H(V)

Clear IDS, TIDS, DATE, NONCES , H(V), H(Common)

SLIP PRICE, H(Common), BAN, RB, [PIN]

EncSlip EA(SLIP)

SigS SS(H(Common);H(V))

SigB SB(EncSlip;H(Common))

� Starting information of parties:

ST-INFB DESC;BAN;PKCA;SKB ;CERTB ; [PIN]

ST-INFS DESC;PKCA;CERTA;SKS ;CERTS

ST-INFA PKCA;SKA;CERTA

� Protocol Flows:

Initiate: B ��������������

SALTB ; IDB; CERTB ; [Text0]
��������������������������������������! S

Invoice: B ����

Clear
z }| {

IDS ; TIDS; DATE; NONCES; H(V); H(Common);
SigS

z }| {

SS(H(Common);H(V)); CERTS; [Text1]

�� S

Payment: B ��������

EncSlip
z }| {

EA(SLIP);

Sig
B

z }| {

SB(EncSlip;H(Common)); [Text2]
��! S

Auth-Request: S �

Clear; Hk(SALTB;DESC); EncSlip; SigS ; CERTS; SigB; [Text3]
��! A

Auth-Response: S �����������

Y=N;

SigA
z }| {

SA(Y=N;H(Common)); [Text4]
��� A

Con�rm: B ��������������

Y=N; V; SigA; CERTA; [Text5]
��������������������������������������� S

Figure 7: 3KP Protocol

16

REQUIREMENTS/PROTOCOLS 1KP 2KP 3KP

Issuer/Acquirer

A1. Proof of Transaction Authorization by Buyer
p p pp

A2. Proof of Transaction Authorization by Seller
pp pp

Seller

S1. Proof of Transaction Authorization by Acquirer
pp pp pp

S2. Proof of Transaction Authorization by Buyer
pp

Buyer

B1. Unauthorized Payment is Impossible
p p pp

B2. Proof of Transaction Authorization by Acquirer
pp pp pp

B3. Certi�cation and Authentication of Seller
pp pp

B4. Receipt from Seller
pp pp

Table 1: Comparison of the iKP payment protocols. A requirement marked by
p

is satis�ed but not
disputable, while

pp
indicates that the requirement is satis�ed based on an undeniable proof, providing

non-repudiation and disputability.

the buyer's signature is signi�cantly superior to that provided by a PIN.
3KP satis�es all the requirements addressed by 2KP, as well as:

A1(b): Undeniable Proof of Transaction Authorization by Buyer. The buyer signs the SLIP using a secret
key SKB known to B only.

S2(b): Proof of Transaction Authorization by Buyer. Based on B's signature, S can verify that SLIP was
signed by B. S cannot verify the correctness of the contents of SLIP, especially not of the PIN.

B1(b): Unauthorized Payment is Impossible. Follows from A1.b.

5.4 Comparison of the protocols

The iKP protocols presented above vary in the degree of both protection and complexity. They proceed
in an incremental path towards electronic payment with strong security features with respect to all parties
involved. Practically speaking, it was envisaged at the time of the design that 1KP would represent a short-
term, interim step towards payment protocols with stronger security guarantees. Thereafter, 2KP and 3KP
could be gradually phased in. Table 1 presents a comparison of the iKP protocols.

The iKP family can ful�ll all stated requirements and, in particular, provide non-repudiatable receipts
from the acquirer to the seller/buyer, and from the seller to the buyer. In case that the buyer also possesses
a public-key pair (3KP), non-repudiation becomes possible also from the buyer to the seller/acquirer.

Anonymity is not a focus of iKP but 1KP and 2KP provides nevertheless complete anonymity of the
buyer to the seller (and the outside): The buyer uses a pseudo-identity IDB which is di�erent in each
transaction and therefore makeing the buyer not only unlinkeable but even untraceable. 3KP clearly leaks
identity information through the certi�cates but through the use of pseudonyms buyers can stay at least
unlinkable. Note also that special care has to be taken when hiding the BAN information in the certi�cate.

Order privacy against eavesdroppers could be achieved by applying a secure communication protocol (e.g.,
SSL [FKK96]), or, if desired, the iKP protocols themselves could be extended to provide that protection.
Since iKP aims at credit-card-like payments, no anonymity against the payment system is provided.

As will be shown in the next section the iKP protocols can easily be extended to support batch processing

17

of payments from the same buyer by the seller, or to guarantee amounts as commonly done, for example, in
the case of car rentals. Another avenue for extensions are micro-payments: The relativly high cost of credit
card transaction make iKP not directly suitable for payments of very small amounts. However, Hauser et
al. [HSW96] show how iKP can be extended to support micro-payments without loosing strong multi-party
security6.

The iKP protocols (more speci�cally, 2KP and 3KP|or a combination thereof) were implemented at
the IBM Z�urich Research Lab. In the next chapter we turn to a more detailed description of the protocols
as they were actually implemented and deployed.

6 ZiP: Implementation and Deployment

6.1 Protocol scenarios

The 2KP and 3KP protocols described in the previous section form the payment authorization core of the
ZiP implementation. Additional functionality was added during design and implementation as a result of
users' requests. This section focuses on the functionality of the implemented protocols; Appendix A contains
their detailed speci�cation.

The �nal ZiP protocol suite includes four protocol scenarios:

1. Payment Authorization (2KP and 3KP augmented with cancellation option)

2. Payment Clearance (Capture)7

3. Refunds

4. Inquiry

These sub-protocols are summarized below.

Payment Authorization. This is the basic payment scenario described in Section 5 and Figure 4. The
ZiP implementation, however, is augmented with an optional Cancel ow from the seller to the buyer after
the Payment ow.

The combined protocol ags set jointly by Buyer and Seller are listed in Figure 8.
The seller may choose (PFLAGS:CLRN) to combine payment authorization with payment clearing in

which case the present protocol su�ces. Alternatively, the seller may decide to only authorize payment and
perform a separate clearance/capture function (described below) at some later time.

If requested by the buyer (PFLAGS:CONFIRM), the seller sends a Con�rm to the buyer (optionally
containing SigA if PFLAGS:SIG A was set) regardless of the acquirer's decision (positive or negative) in
Auth-Response.

If the seller chooses to (or is forced to) delay contacting the acquirer, he can send a Status ow (see
below) to the buyer after receiving Payment. This is to keep the buyer abreast of the transaction status.
Alternatively, the seller can elect to take the risk and send a Con�rm to the buyer without having any real
contact with the acquirer.

In the event that the seller is unable or unwilling, for some reason, to process the buyer's payment, the

payment authorization protocol may be truncated (terminated) with a Cancel ow before trying to contact
the acquirer.

The payment authorization protocol may also be suspended by the Buyer after the second (Invoice) ow.

This abbreviated version can be used for gathering SigS 's (i.e., signed invoices) from multiple sellers for the
purpose of browsing and comparative shopping. The abbreviated protocol run can be resumed at a later
time provided that SigS is still timely/valid.

Separate Payment Clearance/Capture. The protocol is shown in Figure 9. At the discretion of the
seller, payment clearance may be performed either as part of authorization (described above) or postponed
until later. This protocol supports delayed/separate clearance. (Of course, an acquirer may dictate its policy
on this subject to all constituent sellers.)

6Note that most other micro-payment protocols such as Millicent [GMA+95] and NetBill [CTS95] gain their e�ciency
through the use of shared-key cryptosystems and therefore require complete trust in the payment system provider

7The terms "clearance" and "capture" are used interchangeably throughout this document.

18

PFLAGS:SIG B Buyer's signature SigB in Payment and Auth-Request.

While this option is at the discretion of the buyer, a seller can refuse to issue

an Invoice if it is the seller's policy to always require SigB and the buyer is
not able to provide it.

IMPORTANT: PFLAGS:SIG B must be �xed for a given buyer-account
combination. In other words, a buyer who has the ability to generate sig-

natures must always do so. However, it is ultimately the acquirer's respon-

sibility to make sure that a buyer with a signature capability always uses
PFLAGS:SIG B.

PFLAGS:SIG S Sellers's signature SigS in Invoice. This option is set by the buyer but, as

before, a given seller can refuse to comply because, for example, it is not
interested in giving out signed \o�ers" for buyers that aren't ready to pay.

PFLAGS:CONFIRM Indicates that Con�rm is requested. It is set by the buyer; it is envisaged

that every seller should support this option.

PFLAGS:SIG A SigA is requested in Con�rm. It is set by the buyer.

NOTE: this option can only be used in conjunction with the

PFLAGS:CONFIRM option.

PFLAGS:CLRN Authorization and clearance (capture) are performed together. This option
is set by the seller. While a buyer may, in principle, refuse it, it is not likely.

PFLAGS:noEnc The buyer does NOT use encryption; SLIP is sent in the clear. This ag

is set by the buyer. Sellers have no say over this option. The purpose

of this option is to avoid the expense of encryption and to satisfy certain
export regulations in cases when BAN's are not treated as secret or sensitive

information.

NOTE: this option can only be used in conjunction with the PFLAGS:SIG B

option.

Figure 8: Protocol ags used in ZiP

19

Multiple clearance ows against the same payment authorization are supported.

Buyer Seller Acquirer

(after previous auth.)

�
Clrn-Request
����������!

 �
Clrn-Response
�����������

Figure 9: The payment clearance/capture scenario

Refunds. Sellers may issue refunds for previously cleared payments. Although it is understood that
refunds are typically triggered by consumers/buyers, the interaction between buyer and seller that leads to
an eventual refund is assumed to take place o�-line (i.e., outside iKP /ZiP.)

Within iKP /ZiP, a refund transaction|for all practical purposes|is equivalent to (and treated as) a
clearance/capture transaction. This is mainly because a refund is, essentially, a clearance with the lower
amount. The di�erence between a refund and a clearance manifests itself only within the domain of the
�nancial clearing network.

Inquiry. The buyer can ask the seller about the status of a speci�c payment. The protocol is shown in
Figure 10. The buyer may transmit Inquiry at any time after submitting a Payment ow. The seller must
be able to respond for some time after the payment transaction is completed; the exact time period is the
choice of the seller or may be speci�ed by the �nancial institutions.

Buyer Seller Acquirer

������
Inquiry
��������������!

 �
Status;Con�rm or Cancel
��������������������

Figure 10: The status inquiry scenario

6.2 Implementation rationales and explanations

This section explains some of the features of the ZiP protocol design. For the detailed ZiP protocol speci�-
cations, we refer to Appendix A.

Opaque fields. Some protocol �elds are treated opaquely by ZiP. \Opaque" in this context means that
these ows are not carried within the protocol messages. At the same time, these �elds are authenticated
and integrity-protected by ZiP. Some of these �elds may (and sometimes have to) be tacked on by the
higher-layer software. These �elds are:

DESC. Purchase details (e.g., merchandise description) may have to be explicitly transmitted between
buyers and sellers. However, it is not recommended for transmission to the acquirer.

TIDS and TIDB . Seller's and buyer's transaction identi�ers are generated outside of ZiP (by the higher-
layer software). By virtue of being part of Common they are integrity-protected by ZiP. Details of their

20

transport is left unspeci�ed. Since both values serve as input to the hash H(Common), association
management and replay detection by the Transaction Layer (see Section 6.3) will largely be based on
H(Common). (An exception is Initiate: since this ow doesn't contain H(Common), TIDB is used as
the replay detection key for this ow.)

All �elds of the form OPT-SIGZ are (as the name suggests) optional. Like the Texti �elds in Section 5
they carry optional data; unlike Texti, OPT-SIGZ �elds are included in the respective SigZ signatures.
For example, they can be used to carry credentials/certi�cates of various entities (hence their absence
from the ZiP protocol ows), or other optional data like periodic account statements.

Receipt from Seller. The protocols in Section 5 only have one \committing" value V whereby the Seller
commits to whatever outcome is signaled by the Acquirer in Sig

A
.

In ZiP, there are two di�erent \committing" values: V (used for positive Con�rm messages) and V C

(negative Con�rm and Cancel). Thus, the combination of Sig
S
and V provides the buyer with an undeniable

receipt of the payment; while the combination of Sig
S
and V C is a proof for the buyer that the seller

committed to never capturing this payment. Note that by using di�erent values (V , V C) for positive and
negative con�rms (as opposed to the 2KP/3KP protocols in Section 5), these values now commit the Seller
to a unique transacton outcome without linking with a Sig

A
. This allows for a cleaner \decoupling" of

the payment receipt (Sig
S
; V or Sig

S
; V C) by the Seller from the transaction authorization (Sig

A
) by the

Acquirer. It also explains why a Con�rm(PFLAGS:CONFIRM) without Sig
A
(PFLAGS:SIG A) does have

a value as a receipt.)

Typing of message fields. Every signature type generated in ZiP is assigned a unique signature identi�er.
Every signature operation (generation/veri�cation) automatically includes a signature identi�er for a speci�c
signature type. The same holds for all hash function computations.

The following distinct signature types are identi�ed: Sig
B
, Sig

S
, Sig

A
, SigClrn

S
, SigClrn

A
.8

The following hash function computations are uniquely identi�ed:H(Common), H(V), H(V C), Hk(RB;
BAN) and Hk(SALTB;DESC).

Performance. Cryptographic operations such as computation/veri�cation of public key signatures and
en/de-cryption are computationally expensive. iKP and ZiP are designed to improve performance by mini-
mizing the number of cryptographic operations.

Adherence to export regulations. The protocol is designed to minimize the amount of data encrypted,
in order to satisfy the export control rules of the U.S. government. As described in detail in A.3, only SLIP
is encrypted, and the data therein is limited to �nancial information.

6.3 Architecture

Figure 11 shows the architecture of ZiP. Buyer, Seller and Acquirer applications, residing on di�erent network
nodes, access the iKP functionality through the Transaction Layer interface [Lar96]. The Transaction Layer
provides the payment applications with a high-level (C++) interface using simple payment objects, such
as a BuyerTransaction class with methods Initiate(), Pay(), Inquiry(). The Transaction Layer takes care of
association management, audit and con�guration. The assocation management �nds transactions matching
incoming messages based on transaction ids (or H(COMMON), as described in Section 6.1). It detects
duplicate messages and unexpected messages, i.e., those not corresponding to an outstanding or recorded
transaction. Unexpected requests are acknowledged with an error message, unexpected replays are ignored.

The Transaction Layer realizes robustness of the ZiP protocols in the presence of failures. It keeps trans-
action state in persistant storage and recovers from system crashes. To overcome unreliable communication,

the Transaction Layer tries retransmitting after appropriate timeouts. The replay detection in the Transaction
Layer will catch this and correspondingly resend the previous reply. (Note that the messages are idempotent!)

The Comm module sends iKP messages between di�erent ZiP users. It supports several underlying
transport mechanisms such as HTTP, Internet e-mail, TCP/IP.

8Since multiple clearance transactions against the same payment authorization are allowed, the clearance signatures
(SigClrnS , SigClrnA) are further distinguished by CLRN-SEQ.

21

Glue Buyer / Seller / Acquirer Application

Transaction Manager

Buyer Seller Acquirer

iKP Library

Crypto Library (BSAFE)

C
er

ti
fi

ca
te

 L
ib

ra
ry

Crypto

Safe
Storage

Comm

Figure 11: ZiP implementation architecture

Glue is an optional part that glues the network-independent buyer application to a user application such
as a WWW browser, a CD-ROM catalog, etc. (see [HS95])

Payment applications, Transaction Layer, Glue, Comm and Safe Storage are all implemented in C++. The
lower layers, consisting of the iKP, certi�cate and crypto libraries, are written in C.

The iKP Library [Tsu96] provides the core functionality for composing and verifying iKP protocol mes-

sages, using Certi�cate Library [Van96] for verifying certi�cates and Crypto [Ste96] for accessing cryptographic
primitives. The iKP Library allows Buyer, Seller and Acquirer applications to verify received iKP messages
against a context kept by the Transaction Layer, and to compose iKP messages to be sent. It returns an
updated state to the Transaction Layer after each successful veri�cation or composition.

Crypto separates the iKP protocol functionality from the cryptographic functionality, and allows support
for di�erent cryptographic toolkits. The Crypto API consists of methods for signature generation and ver-
i�cation, encryption and decryption, hashing and key handling (generation, destruction). The ZiP Crypto
module is based on the RSA and MD5 functions of the RSA BSAFE 2.1 library. It provides additional func-
tionality such as the randomized and plaintext-aware encryption (using OAEP) described in Appendix A.3.
It also provides an interface for seeding the random number generator and implements seed collection com-
bining various sources of randomness such as network tra�c and inter-keystroke intervals of user-provided
data.

ZiP also implements a dummy Crypto module which allows for non-export-controlled and platform-
independent testing, and serves as an example for implementors of new crypto modules.

The Certi�cate Library implements a simple certi�cate issuing and veri�cation functionality for certi�cates
and certi�cate chains in a hierarchical model. The content of the certi�cates is taken from the X.509 [ISO94]
speci�cation.

For a complete set of ZiP documentation, see http://www.zurich.ibm.com/Technology/Security/

extern/ecommerce/iKP_overview.html.

22

6.4 Deployment

At Europay's Annual Members' Meeting in Seville, Spain, in June 1996, Europay and IBM jointly ran a
small-scale trial allowing visitors to the conference to use their pre-loaded Europay CLIP purse card to
make secure internet payments from a card reader-equipped terminal. The payment scheme used was an
integration of CLIP card payment functionality with ZiP-3KP, resulting in a secure scheme for Internet
payments from pre-loaded purses.

From April 1997 till February 1998, the EMP (Electronic Market Place) project in Japan, funded by
MITI (Ministry of International Trade and Industry), deployed ZiP-3KP in a trial with 5 on-line merchants
and 2000 users. Each user received a smartcard storing his/her ZiP account (keys and certi�cates), allowing
secure Internet purchases from public kiosks and terminals.

ZiP is also the payment technology behind the I-Pay payment product o�ered by Interpay Nederland
and the Dutch banks. I-Pay was launched as a trial in June 1996, o�ering debit-type purchases from initially
twenty on-line shops, using ZiP-3KP. Later, Eurocard/Mastercard credit card payments were added to the
I-Pay brand. Currently I-Pay is accepted by 80 on-line merchants and has a user base of 17000 users. In line
with initial plans to use iKP only for the initial trial and to move to the more standardized SET [MV97]
technology once available and accepted, a phased transition is currently replacing ZiP technology with SET
technology.

Acknowledgements

We thank Phil Janson and Mark Linehan for helpful discussions, and Jose L. Abad Peiro, Hans Granqvist

and Steen Larsen for their contributions to the implementation of iKP /ZiP.

References

[AJSW97] N. Asokan, Phil Janson, Michael Steiner, and Michael Waidner. State of the art in electronic
payment systems. IEEE Computer, 30(9):28{35, September 1997. A Japanese translation of the
article appeared in pp 195-201, Nikkei Computer (http://nc.nikkeibp.co.jp/jp/) issue of March
30, 1998.

[And94] Ross Anderson. Why cryptosystems fail. Communications of the ACM, 37(11):32{41, November
1994.

[Aso98] N. Asokan. Fairness in Electronic Commerce. PhD thesis, University of Waterloo, May 1998.

[ASW98] N. Asokan, Victor Shoup, and Michael Waidner. Asynchronous protocols for optimistic fair ex-
change. In Proceedings of the IEEE Symposium on Research in Security and Privacy, Research
in Security and Privacy, pages 86{99, Oakland, CA, May 1998. IEEE Computer Society Press.
A minor bug in the proceedings version was �xed. An errata sheet, distributed at the conference,
is available at http://www.zurich.ibm.com/Technology/Security/publications/1998/ASW98-
errata.ps.gz; A related paper [?] is available as well.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authenti-
cation. In Advances in Cryptology { CRYPTO '96, number 1109 in Lecture Notes in Computer
Science, pages 1{15. Springer-Verlag, Berlin Germany, 1996.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption { how to encrypt with rsa. In
I.B. Damgard, editor, Advances in Cryptology { EUROCRYPT '94, Lecture Notes in Computer
Science, pages 92{111. Springer-Verlag, Berlin Germany, 1994. �nal (revised) version appeared
November 19, 1995.

[CB94] William R. Cheswick and Steven M. Bellovin. Firewalls and Internet Security { Repelling the

Wily Hacker. Professional Computing Series. Addison-Wesley, 1994. ISBN 0-201-63357-4.

23

[CD97] Eui-Suk Chung and Daniel Dardailler. Joint electronic payment initiative (jepi). White paper,
JEPI, April 1997.

[CGHK98] Pau-Chen Cheng, Juan Garay, Amir Herzberg, and Hugo Krawczyk. A security architecture for
the internet protocol. IBM Systems Journal, Special issue on the Internet, 37(1):42{60, 1998.
Updated version of [?].

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, Advances in Cryptology {

CRYPTO '98, number 1462 in Lecture Notes in Computer Science, pages 13{25. Springer-Verlag,
Berlin Germany, August 1998.

[CTS95] Benjamin Cox, J. D. Tygar, and Marvin Sirbu. NetBill security and transaction protocol. In
First USENIX Workshop on Electronic Commerce [USE95].

[DA98] Tim Dierks and Christopher Allen. The TLS protocol version 1.0. Internet Draft, November
1998. Expires May 12, 1999.

[FKK96] Alan O. Freier, Philip Kariton, and Paul C. Kocher. The SSL protocol: Version 3.0. Technical
report, Internet Draft, 1996. Will be eventually replaced by TLS.

[GMA+95] Steve Glassman, Mark Manasse, Martin Abadi, Paul Gauthier, and Patrick Sobalvarro. The
millicent protocol for inexpensive electronic commerce. In Fourth International Conference on

the World-Wide Web, MIT, Boston, December 1995.

[HS95] Ralf Hauser and Michael Steiner. Generic extensions of WWW browsers. In First USENIX

Workshop on Electronic Commerce [USE95], pages 147{154.

[HSW96] Ralf Hauser, Michael Steiner, and Michael Waidner. Micro-payments based on iKP. Research
Report 2791 (# 89269), IBM Research, February 1996.

[ISO94] ISO/IEC. Information technology - open systems interconnection - the directory: Authentication
framework, June 1994. same as ITU-T Rec X.509.

[Kra99] Hugo Krawczyk. Blinding of credit card numbers in the SET protocol. In Proceedings of the

3rd Conference on Financial Cryptography (FC '99), Anguilla, British West Indies, Feb 1999.
International Financial Cryptography Association (IFCA).

[Lar96] Steen Larsen. Zurich iKP Prototype (ZiP): iKP Transaction Layer Functional Speci�cation. IBM
Zurich Research Laboratory, May 1996.

[MV97] Mastercard and Visa. SET Secure Electronic Transactions Protocol, version 1.0 edition, May
1997. Book One: Business Speci�cations, Book Two: Technical Speci�cation, Book Three:
Formal Protocol De�nition. Available from http://www.setco.org/set speci�cations.html.

[NIS95] NIST National Institute of Standards and Technology (Computer Systems Laboratory). Secure
hash standard. Federal Information Processing Standards Publication FIPS PUB 180-1, April
1995.

[Riv92] Ron Rivest. The MD5 message-digest algorithm. Internet RFC 1321, April 1992.

[Ste96] Michael Steiner. Zurich iKP Prototype (ZiP): Cryptographic Library Speci�cation. IBM Zurich
Research Laboratory, March 1996.

[Tsu96] Gene Tsudik. Z�urich iKP prototype: Protocol speci�cation document. Research Report RZ
2792, IBM Research, February 1996.

[USE95] USENIX. First USENIX Workshop on Electronic Commerce, New York, July 1995.

24

[Van96] Els Van Herreweghen. Zurich iKP Prototype (ZiP): Certi�cate Library (CERT) Speci�cation.
IBM Zurich Research Laboratory, February 1996.

[Wai96] Michael Waidner. Development of a secure electronic marketplace for Europe. In E. Bertino,
H. Kurth, G. Martella, and E. Montolivo, editors, Proceedings of the Fourth European Symposium

on Research in Computer Security (ESORICS), number 1146 in Lecture Notes in Computer
Science, Rome, Italy, September 1996. Springer-Verlag, Berlin Germany. also published in: EDI
Forum 9/2 (1996) 98-106, see also http://www.semper.org.

A Detailed ZiP Protocol Description

A.1 Detailed protocol description

Fields and symbols. Figure 12 describes the (atomic) �elds and cryptographic keys that are used in ZiP,
in addition to those described in Figures 2 and 3. The composite �elds/symbols are described in the protocol
�gures. Figure 12 reects the addition or renaming of �elds caused by the additional scenarios included in
ZiP as opposed to the basic iKP ows. Examples of renaming are AUTH-PRICE (iKP: was PRICE) to be
distinguished fromCLRN-PRICE needed in the separate clearance scenario; or RESP-CODE (iKP: was Y/N)
reecting the non-binary nature (authorization denied, authorization approved but payment not captured,
authorization approved and payment captured) of the Acquirer's response. The timestamps (AUTH-TIME,
CLRN-TIME, INVOICE-EXP) were added to ZiP to enable e�cient replay detection. Adding EXPIRATION
to SLIP was required for reasons of compatibility with existing clearing practices. TIDB was included in the
Common structure to allow for input by the Buyer in the set of transaction identi�ers (TIDS , TIDB).

PFLAGS Protocol option ags (see Figure 8).

V C Random number generated by the seller, used to bind negative
Con�rm/Cancel and Invoice messages.

AUTH-PRICE Amount and currency code authorized.

CLRN-PRICE Amount and currency code cleared; may di�er from AUTH-PRICE.

AUTH-TIME Timestamp of payment authorization; set by acquirer

CLRN-TIME Timestamp of payment clearance; set by acquirer

CLRN-SEQ Clearance sequence number set by seller. Initially set to 0 and incremented
for each successive clearance/refund.

SALTC Random number used to salt the account number in the buyer's certi�cate.

EXPIRATION Expiration date of the buyer's account.

INVOICE-EXP Invoice (o�er) expiration speci�ed by the seller.

RESP-CODE Authorization or capture response code from the acquirer. Can also be set

by the seller in case of a cancellation.

TIDZ Transaction id assigned be each party to an iKP transaction. Generated
at a layer above iKP and not explicitly carried in iKP ows (higher layers

transport TIDs).

OPT-SIGZ Optional text for inclusion in signatures. Not explicitly carried in iKP ows.

Figure 12: Atomic �elds and symbols used in ZiP

Payment with in-line authorization. The basic payment authorization protocol of ZiP is shown in
Figure 13. PFLAGS:CLRN (in Clear) indicates whether the seller wishes the acquirer to perform payment

25

clearance at the same time. The response code from the acquirer indicates whether authorization is given,
and (if clearance was requested) whether the payment was cleared.

� Composite Fields:

Common TIDS , TIDB, PFLAGS, AUTH-PRICE, IDS, DATE, INVOICE-EXP,
NONCES, IDB, Hk(SALTB;DESC), H(V), H(V C)

Clear PFLAGS, IDS, DATE, NONCES, H(Common), INVOICE-EXP, H(V),
H(V C)

SLIP AUTH� PRICE, H(Common), BAN, RB, EXPIRATION, [SALTC or PIN]

EncSlip EA(SLIP)

SigS SS(H(Common); OPT-SIGS)

SigB SB(EncSlip;H(Common), OPT-SIGB)

SigA SA(RESP-CODE, AUTH-TIME, H(Common); OPT-SIGA)

� Protocol Flows:

Initiate: B ���������������
PFLAGS; SALTB ; IDB
���������������������������������! S

Invoice: B �����������������

Clear; [SigS]
������������������������������ S

Payment: B �����������������

EncSlip; [SigB]
������������������������������! S

Cancel: B ���������

RESP-CODE; V C; [SigS]
������������ ��������� S

Auth-Request: S ����

Clear; Hk(SALTB;DESC); EncSlip; SigS; [SigB;]
���! A

Auth-Response: S �����������

RESP-CODE, AUTH-TIME, SigA
�������������������������������������� A

Con�rm: B ��

RESP-CODE(=positive), AUTH-TIME, V; [SigS]; [SigA]
��� S

|OR|

Con�rm: B �

RESP-CODE(=negative), AUTH-TIME, V C; [SigS]; [SigA]
�� S

Figure 13: ZiP: Payment with in-line authorization

Note that the Cancel ow is only used if the seller decides|for whatever reason|not to go ahead with
payment authorization. Cancel may not be used if the seller has received an Auth-Response.

If the payment clearance is not done (either because it was not requested by the seller, or because the
acquirer was unable to perform it), the seller must subsequently either transmit the Clrn-Request message or
take further processing of this payment o�-line.

26

Clearance. The clearance ows of ZiP are shown in Figure 14. The seller uses this protocol to request
the actual transfer of funds from the buyer to the seller. This ow may only occur after the corresponding
authorization ow if clearance was not performed as part of payment authorization. The seller must send
the Clrn-Request message to the same acquirer used for payment authorization.

Inquiry. The ows of ZiP's Inquiry protocol are shown in Figure 15. The buyer may transmit Inquiry
at any time after sending the Payment ow. The response from the seller can be either Con�rm (if the
seller has received Auth-Response), a Status message with his view on the current transaction state (if he
hasn't received Auth-Response), or Cancel (if he decided to cancel the payment and hasn't previously sent
Auth-Request to the acquirer nor Con�rm to the buyer).

Protocol options and flags. The payment authorization protocol may be suspended after the second
(Invoice) ow. This abbreviated version can be used for gathering Sig

S
's (i.e., signed invoices) from multiple

sellers for the purpose of browsing and comparative shopping. The abbreviated protocol run can be resumed
at a later time provided that Sig

S
is still timely/valid.

In addition, ZiP supports the transaction options listed in Figure 8.

A.2 Protocol ow processing

This section describes, step by step, the normal protocol operation by all parties. The handling of errors
and other exceptions by the Transaction Layeris discussed in Section 6.3discussed in the next section.

All parties involved are assumed to have access to stable, non-volatile storage. The term \recording"
means commitment to stable storage. It is further assumed that the buyer and the seller commit all local
variables|transaction ids, nonces, signatures, etc.|to stable storage before sending out a message ow.
Moreover, it is assumed below that incoming ows are associated (matched) with outstanding, currently-
active transaction by the transaction layer software, i.e., software residing above the ZiP message processing
code.

A.2.1 Payment authorization protocol.

This section discusses how basic payment authorization is handled by all participants.

� Composite Fields:

Common TIDS , TIDB, PFLAGS, AUTH-PRICE, IDS, DATE, INVOICE-EXP,

NONCES, IDB, Hk(SALTB;DESC), H(V), H(V C)

SigClrnS SS(H(Common); CLRN-PRICE, OPT-SIG-CLRNS, CLRN-SEQ)

SigClrnA SA(RESP-CODE, CLRN-TIME, CLRN-PRICE, CLRN-SEQ, H(Common);

OPT-SIG-CLRNA)

� Protocol Flows:

Clrn-Request: S �

H(Common);CLRN-PRICE, CLRN-SEQ, SigClrnS
���! A

Clrn-Response: S �

RESP-CODE, CLRN-TIME, CLRN-SEQ, SigClrnA
��� A

Figure 14: ZiP: Clearance protocol

27

� Composite Fields:

Common TIDS , TIDB, PFLAGS, AUTH-PRICE, IDS, DATE, INVOICE-EXP,

NONCES, IDB, Hk(SALTB;DESC), H(V), H(V C)

� Protocol Flows:

Inquiry: B ��

H(Common)
���������������! S

Con�rm: S �

(same as in Figure 13)
������������������ S

|OR|

Cancel: S �

(same as in Figure 13)
������������������ S

|OR|

Status: S ��
STATE

��������������� S

Figure 15: ZiP: Inquiry protocol

Initiate composition. The buyer transmits the Initiate message at the end of the negotiation phase and the
start of the payment phase; this message delimits the boundary between the two phases.

Note that DESC (purchase details) and AUTH-PRICE (purchase amount) are either agreed upon be-
forehand or communicated in-band alongside the Initiate or Invoice ows. In any case, DESC is not carried
within any ZiP ow. The buyer forms INITIATE as follows:
1. Produces IDB by generating random number RB and computing IDB = Hk(RB ;BAN).

2. Generates another random number SALTB to be used for \salting" the hash of the purchase description
(DESC) in subsequent messages; also used as a challenge to the seller.

3. Sets PFLAGS to reect desired protocol options.

4. Sends Initiate.

Initiate processing and Invoice composition. Upon receipt of the Initiate ow, the seller performs the
following steps:
1. Checks buyer options set in PFLAGS and returns an error if it �nds it incompatible with its own policy.

Otherwise, the seller sets the PFLAGS:CLRN option ag in PFLAGS to reect its payment processing

policy.

2. Gets a clock reading and sets DATE.

3. Generates nonce NONCES to be used later for freshness/uniqueness checks.

4. Computes Hk(SALTB ;DESC).

5. Generates random [V; V C] pair and computes the corresponding [H(V);H(V C)] vector.
6. Encodes/linearizes Common as de�ned above and computes H(Common).

NOTE: The seller does not need to additionally \salt" H(Common) because it contains the already-
salted Hk(SALTB;DESC) as well as NONCES .

7. Computes SigS if the PFLAGS:SIG S ag is set.

8. sends Invoice.

Invoice processing. Upon receiving Invoice the buyer takes the following steps:
1. Retrieves the �elds in Clear.

28

2. Validates DATE (within an implementation-de�ned skew).

3. Computes H(Common) and compares it with H(Common) from Clear. This con�rms that the buyer
and seller agree on information contained in Clear, in particular AUTH-PRICE and DESC (through
Hk(SALTB;DESC)).

4. Veri�es Sig
S
if the PFLAGS:SIG S option is set.

The protocol may terminate at this point since, sometimes, the buyer may choose not to proceed with the
actual payment. The seller keeps transaction state for some implementation-speci�c period of time (perhaps
set to the maximum time skew for a given acquirer.) Thereafter, the transaction is deleted.

Payment composition. The buyer performs the following steps when it is ready to proceed with the
payment:
1. If the PFLAGS:noEnc ag is not set, forms SLIP and encrypts it under PKEA as described in \Use of

encryption in iKP /ZiP" below. Include SALTC in SLIP if the PFLAGS:SIG B ag is set.

2. Otherwise, SLIP is simply linearized (encoded) in the clear. Note that in this case neither PIN nor
SALTC are set in SLIP.

3. If PFLAGS:SIG B is set, computes Sig
B
.

4. Sends Payment.

Payment processing. Upon receiving Payment, the seller �rst does the following:
1. Veri�es Sig

B
if PFLAGS:SIG B set and the buyer's credentials are available.

NOTE: If buyer's credentials are not available, the seller may decide to either cancel the transaction

or go ahead with it. In case of the former, a Cancel message is sent to the buyer.

2. Chooses whether to perform immediate or delayed authorization. If the former, proceeds to Auth-Request
message processing. Otherwise, seller returns Status to the buyer.

3. If, for any reason, the seller decides not to process the payment further, it can generate and return a
Cancel message to the buyer.

Auth-Request composition. The seller performs the following steps when it is ready to obtain payment
authorization:
1. If SigS was computed for Invoice, copies the same SigS into Auth-Request.

2. If Sig
S
is not already computed, computes Sig

S
and places it in Auth-Request.

3. Sends Auth-Request.

Auth-Request processing. When the acquirer receives Auth-Request, it:
1. Checks that the DATE is valid (within an implementation-de�ned skew).

2. Check for replays based on H(Common). Reply with previous response if replay.

3. Veri�es SigS .

4. Decrypts EncSlip and obtains:
AUTH-PRICE, BAN, RB, EXPIRATION, H(Common) and optionally PINand saltC .

5. Veri�es SigB if present. This includes computing Hk(SALTC ;BAN) using the previously decrypted
values and matching it with the salted account number in the certi�cate CERTB . Note that SigB must
always be present if PFLAGS:SIG B option ag is set and if the buyer has SigB capability.

6. Encodes/linearizes Common; then, computes H(Common) and cross-checks it with both H(Common)
in Clear and H(Common) in SLIP.

7. Validates that RB and BAN match IDB found in Clear.

8. Composes and sends authorization request on the �nancial network. If PFLAGS:CLRN was set, includes
a capture request with the authorization request.

9. Proceeds to Auth-Response once the response is received from the �nancial network.
Note that the acquirer and/or �nancial network must perform replay detection only if the seller requests

payment capture processing. This is to ensure that payments are not charged to buyers multiple times.
Replay detection for authorization-only requests is a policy matter determined by the individual payment
system providers.

29

Auth-Response composition. When the acquirer receives an authorization (and possibly capture) response
from the �nancial network, it:
1. Sets RESP-CODE to indicate any of:

Authorization denied.

Authorization approved but payment not captured.

Authorization approved and payment captured (only if capture requested in PFLAGS).

2. Sets OPT � SIGA to the authorization code and other optional data provided by the �nancial network.
Data in OPT� SIGA, while included in the computation of Sig

A
, is treated opaquely by ZiP and is

not carried in the ZiP messages. (Its transport is left up to the upper layer.)

3. Computes Sig
A
.

4. Sends Auth-Response to the seller.

Auth-Response processing. When the seller receives Auth-Response, it:
1. Veri�es Sig

A
.

2. Records RESP-CODE, AUTH-TIME and OPT� SIGA.

3. If RESP-CODE is positive, generates positive Con�rm by including V in the message.

4. If RESP-CODE is negative, generates negative Con�rm by including V C in the message.

5. Con�rm is sent only if PFLAGS:CONFIRM ag is set.

Con�rm composition. The seller generates Con�rm as follows:

1. Copies RESP-CODE and AUTH-TIME from Auth-Response.

2. If PFLAGS:SIG A ag is set, copies SigA. (Note that OPT � SIGA has to be tacked on above ZiP.)

3. Copies Sig
S
from Auth-Request (if not provided in Invoice).

4. Includes V (or V C) as evidence to the buyer that the payment transaction has completed.

5. Sends Con�rm.
This completes the payment transaction from the seller's perspective. The only way the seller communi-

cates with the buyer again about the same transaction is if the buyer sends Inquiry.

Con�rm processing. When the buyer receives Con�rm, it:
1. If PFLAGS:SIG A ag is set, veri�es Sig

A
.

2. If PFLAGS:SIG S ag is not set, veri�es SigS .

3. Veri�es that V hashes to H(V) (positive Con�rm) or V C hashes to H(V C) (negative Con�rm).

4. Records RESP-CODE, V , SigA, and SigS as evidence of the transaction's completion.

Cancel composition. The seller generates Cancel as follows:
1. Sets RESP-CODE to a speci�c error code (e.g., merchandise out of stock.) Note that RESP-CODE

in Cancel is set by the Seller and therefore its meaning is di�erent from that in Auth-Response (and
Con�rm).

2. If SigS is not previously computed, computes SigS afresh.

3. Includes V C as evidence to the buyer that the payment transaction has been aborted, i.e., the seller

promises not to pursue buyer's payment.

4. Sends Cancel.

Cancel processing. When the buyer receives Cancel, it:
1. If PFLAGS:SIG S ag is not set, veri�es SigS .

2. Veri�es that V C hashes to H(V C).
3. Stores RESP-CODE, V C, and SigS as evidence of the transaction's dismissal.

Note that any Cancel received after a valid Con�rm should be ignored.

Status processing. When the buyer receives Status, it:
1. Stores the current payment status (from the seller's perspective) reected in STATE.

30

A.2.2 Clearance (Capture) protocol.

The seller utilizes the clearance protocol when doing on-line (rather than batch) payment capture processing,
and the RESP-CODE received in Auth-Response indicates that payment is authorized but not captured.
Note that clearance must be performed with the same acquirer that handled the previous authorization.
Furthermore, clearance cannot be initiated before Auth-Response is received.

Moreover, as mentioned earlier, the clearance protocol may be used for implementing seller-initiated
refunds.

Clrn-Request composition. The seller performs the following steps:
1. Obtains CLRN-PRICE.

2. Computes SigClrn
S
.

3. Increments CLRN-SEQ.

4. Sends Clrn-Request.

Clrn-Request processing. When the acquirer receives Clrn-Request, it:
1. Checks that the transaction is in the appropriate state, i.e., that either a) payment authorization or b)

payment clearance, has been performed.

2. Examines previous clearance transactions against the same payment authorization and checks that
CLRN-SEQ is new (i.e., greater than that in the last Clrn-Request processed.)

3. Veri�es SigClrnS .
Note that the acquirer and/or �nancial network must perform replay detection of capture requests. This is
to ensure that payments are not charged to buyers multiple times.

The relationship between AUTH-PRICE and CLRN-PRICE (as well as that between CLRN-PRICE and
earlier cleared amounts) is not checked within ZiP. The di�erence between the two values is subject to
locally-de�ned constraints. (Checking is assumed to be done at the transaction layer or higher.)

Clrn-Response composition. When the acquirer receives the appropriate response from the �nancial clearing
network, it:
1. Sets RESP-CODE to indicate any of:

capture denied; or

capture completed.

2. Sets time-of-clearance, CLRN-TIME.

3. Computes SigClrnA.

4. Sends Clrn-Response to the seller.

Clrn-Response processing. When the seller receives Clrn-Response, it:
1. Veri�es SigClrn

A
.

2. Archives RESP-CODE and other �elds for use in any future Status or Con�rm message.

A.2.3 Inquiry protocol.

Inquiry composition. The buyer can issue Inquiry at any time after sending the Payment ow. Composing
Inquiry does not require any special actions since its contents are limited to H(Common).

Inquiry processing. When the seller receives an Inquiry ow he|depending on the current state of the
transaction|transmits Con�rm, Cancel or Status to the buyer.

A.3 The encryption function

iKP requires the buyer to encrypt the SLIP as part of the Payment message. (The sole exception to this is
when both the PFLAGS:noEnc and the PFLAGS:SIG B option ags are set.)

31

A.3.1 Payload

Encryption is always performed using the encryption public key of the acquirer{PKEA|for the Payment
message. It is assumed that PKEA has a modulus size of at least 1024 bits. The format of the linearized
(encoded) SLIP to be encrypted is as follows:

SLIP = [AUTH� PRICE;H(Common);BAN; RB; [SALTC jPIN];EXPIRATION;PADDING]

Fields within SLIP are described in Figure 12. The sizes of these �elds are given in Figure 16. All of the
above components are encoded into a 896-bit long string.

AUTH-PRICE 64 bits

BAN 0-128 bits (128 bits can be used to encode up to 38 decimal digits. Current
credit cards are only 12 digits.)

EXPIRATION 32 bits

SALTC or PIN 0-64 bits (up to 19 decimal digits)

H(Common) 128 bits

RB At least 128 bits

PADDING length is the di�erence between 832 bits and the sum (in bits) of all previous

�elds.

Figure 16: Sizes of �elds in EncSlip

A.3.2 Encryption Process

The actual encryption process is adapted from [BR94]. The encryption function EA is based on RSA. We let
f(x) = xe (mod N) denote the RSA function and f�1(y) = yd (mod N) its inverse, where N is a 1024
bit modulus. The issue is that simply encrypting under RSA{ ie. setting E(x) = f(x){ is not enough: this
doesn't provide the \integrity" or \plaintext awareness" we need. Instead, we �rst \embed" a up to 832-bit
plaintext into a 1024 bit string r in a very special way and then compute f(r). The scheme we now describe
is a simpli�cation of a OAEP scheme from [BR94]. It makes use, in addition to RSA, of MD5 as the hash
function H , and is provably secure assuming H behaves like a \random function."

The encryption process is illustrated in Figure 17 and performs following steps:

1. Prepend 64 bits of zeros to 832 bits of DATA to form x=[0. . . 64x. . . 0, DATA].

2. Generate random 128-bit string E SALT.

3. Compute a = x XOR H 1(E SALT).

4. Let b = E SALT XOR H 2(a).

5. Compute E a(a,b) (combined length of a,b is 1024 bits).

H 1 is a one-way function which expands data from one block of 128 bits to 896 bits and is illustrated in
Figure 18.

H 2 is a one-way function which compresses data of size 896 to a block of 128 bits. See Figure 19 for its
implementation.

32

DATA

000...00E_SALT

H_1(E_SALT)

AB

H_1

XOR XORH_2

RSA Encrypt

Random

Figure 17: Encryption using OAEP

INPUT

OUTPUT

MD5 MD5 MD5 MD5 MD5 MD5 MD5

START (= 0)

1 2 3 4 5 60

Figure 18: sl Hash-function H1 for OAEP

INPUT

OUTPUT

MD5

64 bits

Figure 19: Hash-function H2 for OAEP

33

DATA

E_SALT

H_1(E_SALT)

AB

H_1

XOR XORH_2

RSA Decrypt

000...00

XXX...XX=?

Figure 20: Decryption using OAEP

A.3.3 Decryption Process

The decryption process is illustrated in Figure 20 and performs the following steps:

1. Compute (a,b) = D a(E a(a,b)).

2. Compute E SALT = b XOR H 2(a).

3. Compute x = a XOR H 1(E SALT).

4. Check for existepnce of 64 leading 0-s in x and obtain DATA.

34

